Statistics
 Explanation of Population Proportion Confidence Interval (CI) Formula

Example: What proportion of ESU students drink coffee? We sampled 155 ESU students, and 82 of them told us they drink coffee.

Population $=$ all ESU students	Sample $=155$ ESU students who were asked $(n=155)$
Parameter $=p=$ proportion of all ESU students who drink coffee (unknown)	Statistic $=\hat{p}=$ proportion of the sample who drink coffee

$$
\hat{p}=\frac{82}{155}=0.529
$$

From Chapter 6: The Distribution of \hat{p} is approximately normal

	Actual	Approximated
Mean	p	$\hat{p}=0.529$
SD	$\sqrt{\frac{p(1-p)}{n}}$	$\mathrm{SE}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{0.529(1-0.529)}{155}}=0.04$

Idea Behind the CI: The unknown parameter p is in the center of the distribution. By using the unbiased estimator \hat{p} as the center and approximating the middle 95% of the distribution, we have a 95% chance that we found p.

We get a 95\% Confidence Interval for p by finding the middle 95% of this distribution

$\operatorname{invNorm}(0.025,0.529,0.04)=0.451$
$\operatorname{invNorm}(0.975,0.529,0.04)=0.607$

- A 95\% CI for the proportion of ESU students who drink coffee is $(0.451,0.607)$
- Correct Interpretation: There's a 95% chance that the interval ($0.451,0.607$) contains the proportion of ESU students who drink coffee.

Picture of the Confidence Interval

- The Margin of Error (ME) is $0.607-0.529=0.078$ (you can find this in a few different ways)
- For the CI, we start at \hat{p} in the center and then add and subtract ME.
- Another way to write the CI is

$$
\hat{p} \pm M E=0.529 \pm 0.078
$$

The Margin of Error formula is based on the Standard Normal Curve z (Mean 0, SD 1). Here is the middle 95\%:

$\operatorname{invNorm}(0.025,0,1)=-1.96$
$\operatorname{invNorm}(0.975,0,1)=1.96$
The z-score 1.96 is called a critical value

In the example, we had $\mathrm{ME}=0.078, \mathrm{SE}=0.04$
Notice that ME $=0.078=1.96$ * $0.04=1.96$ *SE

Formula for the Margin of Error

$$
M E=z^{*}(S E)=z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

We put it all together to get:

Formula for the Confidence Interval for p
Point Estimate $\pm \mathrm{ME}=\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

