

Normalcdf: ($2^{\text {nd }}$ VARS (distr)) For a population that can be modelled by a Normal model centered at mean μ with standard deviation $\sigma, N(\mu, \sigma)$:
This function finds the percentage of the population (or probability) that

1) falls below a given value A : normalcdf ($-1_{\text {EE }} 99, A, \mu, \sigma$)
2) falls between two given values A and B : normalcdf (A, B, μ, σ)
3) lies above a given value B : normalcdf ($B, l_{E E 99}, \mu, \sigma$)
$\{$ We use 1 Ee99 to represent $+\infty$ and -1 Ee99 to represent $-\infty$. EE is " 2 nd ", \}

Example: Assuming a normal population has a mean of 24.8 and std dev of $6.2, N(24.8,6.2)$, what percentage of the population is less than 30.5 ?
normalcdf(-1 EEE $99,30.5,24.8,6.2)=.8210$ or 82.1% of the population is less than 30.5
$\underline{\text { invNorm (}} 2^{\text {nd }}$ VARS (distr)) For a population that can be modelled by a Normal model centered at mean μ with standard deviation $\sigma, N(\mu, \sigma)$:
This function finds the nth percentile. That is, the value that has $n \%$ of the population below it.

$$
\text { nth percentile value }=\operatorname{invNorm}(n, \mu, \sigma)
$$

Example: Assuming a normal population has a mean of 24.8 and std dev of $6.2, N(24.8,6.2)$, what is the $40^{\text {th }}$ percentile (40% of the population is below what value?)?
invNorm $(.4,24.8,6.2)=23.229$ or 40% of the population is below 23.229
\mathbf{z}-score is a standardized value. It represents how many standard deviations above (or below) a data value is from the mean. Z-scores have a mean of 0 and a standard deviation of 1 .

$$
z=\frac{y-\mu}{\sigma}
$$

Normalcdf and invNorm can be used with z-scores
To find the percentage of the population that falls:

1) below a given value: Find the z -score for the value. Then calculate normalcdf (-1ee99, z, 0,1)
2) falls between 2 values: Find the z-score for each value. Then calculate $\left(z_{1}, z_{2}, 0,1\right)$
3) lies above a given value: Find the z -score for the value. Then calculate normalcdf ($z, 1 e e 99,0,1$)
\{The calculator default is mean 0 and std dev 1 \}

Example: Assuming a normal population has a mean of 24.8 and std dev of $6.2, N(24.8,6.2)$, what percentage of the population is less than 30.5 ?

$$
z=\frac{30.5-24.8}{6.2}=.919355
$$

normalcdf(-1ee99,.919355) $=.8210$ or 82.1% of the population is less than 30.5
\{keep many decimals in z-score calculation or the normalcdf calculation will be "off"\}

To find the nth percentile z-score:
First find the nth percentile z -score $=\operatorname{invNorm}(n, 0,1)$
Next use z-score formula to solve for the nth percentile value

Example: Assuming a normal population has a mean of 24.8 and std dev of $6.2, N(24.8,6.2)$, what is the $40^{\text {th }}$ percentile (40% of the population is below what data value?)?
$\operatorname{invNorm}(.4,0,1)=-.253347=40^{\text {th }}$ percentile z-score
$z=-.253347=\frac{y-24.8}{6.2}$
solve for y
$y=23.22940 \%$ of the population is below 23.229
\{keep many decimals in invNorm output or the y calculation will be "off"\}

