SETS - Intersection, Union, Compliment, and Set Difference

The intersection of sets A and B is the set of elements that are in both set A and set B.
We write the intersection as $A \cap B$
Example: Let $A=\{\mathrm{c}, \mathrm{a}, \mathrm{r}, \mathrm{o}, \mathrm{l}, \mathrm{i}, \mathrm{n}\}$ and $B=\{\mathrm{f}, \mathrm{l}, \mathrm{o}, \mathrm{r}, \mathrm{i}, \mathrm{d}, \mathrm{a}\}$ then $A \cap B=\{\mathrm{a}, \mathrm{r}, \mathrm{o}, \mathrm{l}, \mathrm{i}\}$

If the sets have no elements in common, they are disjoint sets.

The union of sets A and B is the set of elements that are in either A or B, or both.
We write the union as $A \cup B$
Example: Let $A=\{\mathrm{c}, \mathrm{a}, \mathrm{r}, \mathrm{o}, \mathrm{l}, \mathrm{i}, \mathrm{n}\}$ and $B=\{\mathrm{f}, \mathrm{l}, \mathrm{o}, \mathrm{r}, \mathrm{i}, \mathrm{d}, \mathrm{a}\}$
then $A \cup B=\{\mathrm{c}, \mathrm{a}, \mathrm{r}, \mathrm{o}, \mathrm{l}, \mathrm{i}, \mathrm{n}, \mathrm{f}, \mathrm{d}\}$
Notice that we did not write the shared elements: a, r, $\mathrm{o}, \mathrm{l}, \mathrm{i}$ twice in the union set.

The number of elements in the union of set A and set B is the sum of the number of elements in both sets minus the number of elements in their intersection: $\mathrm{n}(A \cup B)=\mathrm{n}(A)+\mathrm{n}(B)-\mathrm{n}(A \cap B)$ Example:
$A=\{\mathrm{d}, \mathrm{o}, \mathrm{g}\}$ and $\mathrm{n}(A)=3$
$B=\{\mathrm{s}, \mathrm{l}, \mathrm{e}, \mathrm{d}\}$ and $\mathrm{n}(B)=4$
$A \cap B=\{\mathrm{d}\}$ and $\mathrm{n}(A \cap B)=1$
$A \cup B=\{\mathrm{d}, \mathrm{o}, \mathrm{g}, \mathrm{s}, 1, \mathrm{e}\}$ and $\mathrm{n}(A \cup B)=6=3+4-1=\mathrm{n}(A)+\mathrm{n}(B)-\mathrm{n}(A \cap B)$

The complement of A is the set of elements of the universal set, U, that are not elements of A. Example: $U=\{\mathrm{t}, \mathrm{e}, \mathrm{x}, \mathrm{a}, \mathrm{s}\}$ and $A=\{\mathrm{e}, \mathrm{a}\}$ and the complement of $\mathrm{A}=\{\mathrm{t}, \mathrm{x}, \mathrm{s}\}$

The difference of sets B and A is the set of elements that are in B but not in A. Example: $A=\{2,4,6,8\}$ and $\mathrm{B}=\{1,2,3,4,5,6\}$ $B-A=\{1,3,5\}$

