SETS – Equal, Equivalence, and Subsets

Two sets *A* and *B* are <u>equal</u> if they have <u>exactly the same</u> elements. Every element of *A* must be an element of *B* and every element of *B* must be an element of *A*. The order the elements are written does not matter. We write A = B.

<u>Example</u>: $A = \{x, y, z, e, f\}$ is equal to the set $B = \{e, x, f, y, z\}$ but A is not equal to the set $C = \{x, y, z, e, f, g\}$

Sets *A* and *B* are <u>equivalent</u> if n(A) = n(B), they have the same <u>number</u> of elements. The sets can be put in a **one-to-one correspondence.**

<u>Example</u>: $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$

 $A \neq B$ but A is <u>equivalent</u> to B. Both sets have 3 elements. We can "match up" every element of A with an element of B and vice versa (one-to-one correspondence)

The set *A* is a <u>subset</u> of the set *B* if every element of *A* is also an element of *B*. We write $A \subseteq B$. If there is an element of *A* that is not in *B* then *A* is not a subset of *B*.

Example: For the following sets $P = \{5, 10, 15, 20, 25, 30\}$ and $L = \{10, 20, 30\}$ and $X = \{25, 30, 35\}$ *L is a subset of P but X is not a subset of P.*

Some properties of subsets:

1) Every set is a subset of itself: $P \subseteq P$

2) The empty set is a subset of every set: $\emptyset \subseteq P$

The set A is a **proper subset** of the set B if A is a subset of B but $A \neq B$. That means there is at least 1 element in B that is not in A. We write $A \subset B$ *Example:* The set L in the previous example is a proper subset of P.

Number of subsets of a given set: A set that has k elements has 2^k subsets (including the empty set and the entire set itself) and 2^k -1 proper subsets (because we exclude the entire set). Example: List the subsets of the set $F = \{\text{red}, \text{ white}, \text{ blue}\}$ Subsets: \emptyset $\{\text{red}\} \{\text{white}\} \{\text{blue}\}$ $\{\text{red}, \text{white}\} \{\text{red}, \text{blue}\} \{\text{white}, \text{blue}\}$ $\{\text{red}, \text{white}\} \{\text{red}, \text{blue}\}$

The set *F* has 3 elements and 2^3 =8 subsets and 2^3 -1 = 7 proper subsets.