SETS - Equal, Equivalence, and Subsets

Two sets A and B are equal if they have exactly the same elements. Every element of A must be an element of B and every element of B must be an element of A. The order the elements are written does not matter.
We write $A=B$.
Example: $A=\{x, y, z, e, f\}$ is equal to the set $B=\{e, x, f, y, z\}$ but A is not equal to the set $C=\{x, y, z, e, f, g\}$

Sets A and B are equivalent if $n(A)=n(B)$, they have the same number of elements. The sets can be put in a one-to-one correspondence.
Example: $\quad A=\{1,2,3\}$ and $B=\{4,5,6\}$
$A \neq B$ but A is equivalent to B. Both sets have 3 elements. We can "match up" every element of A with an element of B and vice versa (one-to-one correspondence)

The set A is a subset of the set B if every element of A is also an element of B. We write $A \subseteq B$. If there is an element of A that is not in B then A is not a subset of B.

Example: For the following sets $P=\{5,10,15,20,25,30\}$ and $L=\{10,20,30\}$ and $X=\{25,30,35\}$
L is a subset of P but X is not a subset of P.

Some properties of subsets:

1) Every set is a subset of itself: $P \subseteq P$
2) The empty set is a subset of every set: $\emptyset \subseteq P$

The set A is a proper subset of the set B if A is a subset of B but $A \neq B$. That means there is at least 1 element in B that is not in A. We write $A \subset B$
Example: The set L in the previous example is a proper subset of P.

Number of subsets of a given set: A set that has k elements has 2^{k} subsets (including the empty set and the entire set itself) and $2^{\mathrm{k}}-1$ proper subsets (because we exclude the entire set).
Example; List the subsets of the set $F=$ \{red, white, blue $\}$

Subsets:

Ø
\{red $\{$ white $\}$ \{blue $\}$
\{red, white $\}$ \{red, blue $\}$ \{white, blue $\}$
\{red, white, blue\}
The set F has 3 elements and $2^{3}=8$ subsets and $2^{3}-1=7$ proper subsets.

