Mayan Numeration System

This is similar to a base-20 place value system: $20^{\circ}=1,20^{1}, 20^{*} 18,20^{2 *} 18,20^{3 *} 18,20^{4 *} 18, \ldots$

The numerals are represented vertically with the lowest place value at the bottom and a space separating each place value.

There are three symbols:

To convert a Mayan numeral to base-10 (Hindu-Arabic): sum the value of the symbols in each place and then multiply by the place value.

For example: The Mayan numeral - is equivalent to the base-10 number

(1)		
\cdots		
- 0		
$\overline{\bar{"}}$		
Face value	Place Value	Face Value times Place Value
1	20^{3} * $18=144,00$	144,000
0	$20^{2} * 18=7,200$	0
$5+5+1+1+1+1=14$	20 * $18=360$	5,040
$5+1+1+1=8$	$20^{1}=20$	160
$5+5+5=15$	$20^{\circ}=1$	15

Base-10 equivalent is: $144,000+0+5,040+160+15=149,215$

To convert a base-10 number to Mayan we need to divide by the place values.
For example: Convert 8,292 to Mayan:

Place Values		Face Value
$20^{3 *} 18=144,000$	Larger than 8,292 so not possible	
$20^{2 *} 18=7,200$	$8292 \div 7200=1$ with remainder 1092	1
$20^{*} 18=360$	$1092 \div 360=3$ with remainder 12	3
$20^{1}=20$	$12 \div 20=0$ with remainder 12	0
$20^{0}=1$	$12 \div 1=12$ with no remainder	12

Mayan Numeral is

