Statements in Logic

A <u>statement</u> in logic is a <u>declarative</u> sentence that is either true or false. A <u>simple statement</u> contains a <u>single</u> idea. A <u>compound statement</u> contains <u>several</u> ideas combined together. The words that join the ideas of a compound sentence are called **connectives.**

Negation is a statement expressing the idea that something is not true or not false. (Symbol: ~)

р	∼ p
Т	F
F	Т

A **conjunction** expresses the idea of <u>and</u>. (Symbol: \land)

р	q	$p \wedge q$
Т	Т	T
Т	F	F
F	Т	F
F	F	F

A **disjunction** conveys the notion of *or*. (Symbol: \vee)

р	q	$p \lor q$
Т	Т	T
T	F	Т
F	Т	Т
F	F	F

A **conditional** conveys the notion of if...then. (Symbol: \rightarrow)

р	q	$\rho \longrightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

A <u>biconditional</u> represents the idea of <u>if and only if</u>. (Symbol: \leftrightarrow) The biconditional combines the ideas: if p then q and if q then p.

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т