Babylonian Numeration System

This is a base- 60 place value system: $60^{\circ}=1,60^{1}, 60^{2}, 60^{3}, \ldots$

Numerals are represented horizontally in decreasing place value order with the smallest place value (the ones) on the right and a space separating the place values.

There are two symbols: $\boldsymbol{\nabla}=1<=10$
To convert a Babylonian numeral to base-10 (Hindu-Arabic): sum the value of the symbols in each place and then multiply by the place value.

For example: The Babylonian numeral $\|\langle\langle\langle \rangle\langle\| \|$ is equivalent to the base-10 number
$(1+1)^{*} 60^{2}+(10+10+10+1) * 60^{1}+(10+10+1+1+1) * 60^{0}=2 * 3600+31 * 60+23 * 1=7,200+1,860+23=9,083$

They used the symbol \rangle for subtraction. For example, the numeral $\langle\rangle||$ represents $20-3=17$.

To convert a base-10 number to Babylonian we need to divide by powers of 60.
For example: Convert 7,573 to Babylonian:

Powers of 60		Face Value
$60^{3}=21,600$	Larger than 7,573 so not possible	
$60^{2}=3,600$	$7573 \div 3600=2$ with remainder 373	2
$60^{1}=60$	$373 \div 60=6$ with remainder 13	6
$60^{\circ}=1$	$13 \div 1=13$ with no remainder	13

