Polynomial Functions, Rational Functions and Transformations

Polynomial Functions

We get polynomial functions by adding or subtracting power functions with positive integer powers.

$$
\text { Examples: } f(x)=x^{2}+3 x-6, \quad g(x)=x^{3}-x^{4}+7 x^{2}-2
$$

Since we can plug any numbers into polynomials, the domain is all real numbers $(-\infty, \infty)$
In polynomials, we look for roots $=\boldsymbol{x}$-intercepts $=$ zeroes
The highest power of a polynomial is called its degree.
For polynomials the number of roots \leq degree
Another interesting feature of polynomials are the high and low points.
A high point is called a maximum (the plural is maxima), and low point is classed a minimum (the plural is minima).
An extremum (plural extrema) is either a max or a min
In polynomials, the number of extrema \leq degree - 1

Rational Functions

We get rational functions by dividing polynomials.

Examples:

$$
f(x)=\frac{2 x-8}{x+3}, \quad g(x)=\frac{2 x-8}{x^{2}-16}, \quad h(x)=\frac{x^{3}}{x^{2}+x-20}
$$

With rational functions we see interesting properties where the numerator $=0$ or the denominator $=0$
We can see x-intercepts and singularities. A singularity is where the functions goes up to $+\infty$ or down to $-\infty$
In the function $f(x)$ above: The function f has an x-intercept where the numerator $=0(x=4)$. The function f has a singularity where the denominator $=0(x=-3)$

The singularity also shows a vertical asymptote. An asymptote is a line, where the graph gets infinitesimally close to the line.

Rational function may also have horizontal asymptotes. The function f above has a horizontal asymptote at $y=2$
Some rational functions have "holes" in their graphs - missing points. This may occur where both the numerator $=0$ and the denominator $=0$. For example, the function g above has a hole at $x=4$.

Some rational functions have oblique asymptotes, which are lines, but not vertical or horizontal. For example the function h above has an oblique asymptote

Rational Function Facts (num = numerator, denom = denominator)

- The zeroes occur where num $=0$ but denom $\neq 0$
- Vertical asymptotes occur where num $\neq 0$ but denom $=0$
- Holes occur where both num $=0$ and denom $=0$
- If degree num \leq degree denom, you should see a horizontal asymptote
- If degree num > degree denom, you should see an oblique asymptote
- For horizontal or oblique asymptotes, compute $\frac{\text { Highest Power in Num }}{\text { Highest Power in Denom }}$

Polynomial Functions, Rational Functions and Transformations

Transforming Graphs

There are methods of stretching, shrinking, and moving function graphs.
Examples: \quad Graph the functions $y=x^{2}, y=3 x^{2}, y=\frac{1}{2} x^{2}$
Graph the functions $y=3 x^{2}, y=-3 x^{2}$

Facts About Multiplying Functions by Constants

1. If $k>1$, then we graph $k f(x)$ by stretching the graph of $f(x)$ vertically
2. If $0<k<1$, then we graph $k f(x)$ by shrinking the graph of $f(x)$ vertically
3. To get the graph of $-f(x)$, we flip the graph of $f(x)$ over the x-axis

Examples: \quad Graph the functions $y=x^{2}, y=x^{2}-4, y=x^{2}+3$
Facts About Adding or Subtracting a Number to a Function: Assume b is a positive number.

1. We get the graph of $f(x)+b$ by moving the graph of $f(x)$ up by b-units
2. We get the graph of $f(x)-b$ by moving the graph of $f(x)$ down by b-units

Examples: $\quad G r a p h ~ t h e ~ f u n c t i o n s ~ y=x^{2}, y=(x-4)^{2}, y=(x+3)^{2}$
Facts About Adding or Subtracting a Number to a Function: Assume a is a positive number.

1. We get the graph of $f(x-a)$ by moving the graph of $f(x)$ RIGHT by a-units
2. We get the graph of $f(x+a)$ by moving the graph of $f(x)$ LEFT by a-units
