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Exponential Functions 
Exponential functions have the independent variable in the exponent.  The base is a constant. 
General Formula:  𝑦 = 𝑏𝑥 for 𝑏 > 0 

Examples:  Graph 𝑦 = 2𝑥 , 𝑦 = (
1

3
)

𝑥
 

Depending on the base, these models are usually called exponential growth or exponential decay. 
Exponential functions have a horizontal asymptote at 𝑦 = 0 (the 𝑥-axis), and a 𝑦-intercept at (0, 1) 
The general graphs, using the general formula, for these functions are 
 

Exponential Growth : b 1 Exponential Decay : 0 b 1

    
 
The Important Number 𝒆 and the Important Function 𝒇(𝒙) = 𝒆𝒙  
Since the number 𝑒 was first discovered by Napier in 1618, many different formulas have been used to describe it. 
Here is one formula to get 𝑒:  on your calculator, create a function  

𝑦 = (1 +
1

𝑥
)

𝑥

 

Then look at the values (𝑦-coordinates) when 𝑥 gets really big – over 100,000.  You can do this with a table. 
For very large 𝑥, this function gets closer and closer to a height of 𝑒 = 2.718281828459 … (an infinite decimal which 
doesn’t repeat). 
On your calculator, you can also get 𝑒 by calculating 𝑒1 
A very important exponential function is 𝑓(𝑥) = 𝑒𝑥.  Graph it. 
In some books and in some software, this is written 𝐸𝑥𝑝[𝑥]. 
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Inverse Functions 

Example:  The conversion function for degrees Fahrenheit (𝑥) into degrees Celsius (𝑦) is 𝑦 =
5

9
(𝑥 − 32) 

Make a table which includes 𝑥 = 32, 50, 80, 100, 212 

Sometimes, we also want to convert ºC into ºF.  The original formula gives us 𝐶 =
5

9
(𝐹 − 32) 

We now need to solve for 𝐹.  Do the algebra and you get  𝐹 =
9

5
𝐶 + 32 

 
Fact:  A function 𝑦 = 𝑓(𝑥) sometimes has an inverse function.  We obtain it by swapping the 𝑥 and 𝑦 and then solving 
for y. 

The symbol for the inverse of the function 𝑓 is written 𝒇−𝟏(𝒙).  THIS DOES NOT MEAN RECIPROCAL!!!!! 
 

Example:  𝑓(𝑥) =
5

9
𝑥 −

160

9
 .  Find 𝑓−1(𝑥).   

𝑦 =
5

9
𝑥 −

160

9
 

swap x and y: 𝑥 =
5

9
𝑦 −

160

9
 

solve for y: 𝑥 +
160

9
=

5

9
𝑦 

 
9

5
(𝑥 +

160

9
) = 𝑦   or  𝑦 =

9

5
𝑥 + 32 

 
In this example, try 𝑥 = 77 in the original function and convert the answer “backwards”.   
What do you get from (𝑓−1 ∘ 𝑓)(77)?  Also find (𝑓 ∘ 𝑓−1)(25)  and   
 
Fact:  If 𝑓 has an inverse function, then (𝑓 ∘ 𝑓−1)(𝑥) = 𝑥  and  (𝑓−1 ∘ 𝑓)(𝑥) = 𝑥 
 
 
Inverse Functions Continued 
A function is called two-to-one (𝟐 − 𝟏) if at least two 𝑥’s give the same 𝑦.   
A function is called one-to-one (𝟏 − 𝟏) if it is not 2 − 1. 
Fact:  One-to-One functions have inverses 
The Horizontal Line Test for Inverses of Functions (HLT):  Assume 𝑦 is a function of 𝑥.  If a horizontal line intersects the 
graph of the function more than once, then the function does NOT have an inverse. 
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Logarithmic Functions 
Logarithmic functions are the inverses of exponential functions.  We again work with positive bases (𝑏 > 0) 
Example:  Graph 𝑓(𝑥) = 2𝑥 and make a table for the function with 𝑥 = –2, –1, 0, 1, 2 
We can see that the graph passes the HLT. 
On the table swap the 𝑥 and 𝑦.  Graph the points on the new table 
This is the same as writing 𝑥 = 2𝑦.  We write this as 𝑦 = log2(𝑥) or 𝑦 = log2 𝑥 
When doing logarithms, think about switching 𝑥 and 𝑦 from an exponential function and looking for an exponent 
 
Facts:  𝑓(𝑥) = 𝑏𝑥 ⟺ 𝑓−1(𝑥) = log𝑏(𝑥)   which can be written    𝑥 = 𝑏𝑦 ⟺ 𝑦 = log𝑏(𝑥) 
 
Examples:  Find log2 32,  log10 10,  log 10000,  ln(𝑒−2),  log(−5),  log(0) 
 
Shorthand: log 𝑥 means log10 𝑥  ln 𝑥 means log𝑒 𝑥 
 
Facts: 1. The answer of a logarithm is an exponent 
 2. We cannot take a log of a negative number 
 3. We cannot take a log of zero 
 
Graphs of Functions and Inverses 
Example:  Graph the functions 𝑦 = 10𝑥,  𝑦 = log 𝑥,  𝑦 = 𝑥 
We see that the graphs of the exponential and logarithm are symmetric = mirror 
images. 
 
Fact:  For 𝑏 > 1, the graph of 𝑓(𝑥) = log𝑏(𝑥) has an x-intercept at 𝑥 = 1 and a 
vertical asymptote at 𝑥 = 0 (the 𝑦-axis).  The general shape is shown on the right: 
 
Fact About Graphs of 𝑓(𝑥) and 𝑓−1(𝑥) 
The graphs of a function and its inverse are symmetric around the line 𝑦 = 𝑥 
 
Properties of Logarithms:   
Because of the properties of exponents, we can get related properties of logs 
 
 

Logarithm : b 1

Exponential Property Logarithmic Property (Work for Any Base) 

𝑥𝑝𝑥𝑞 = 𝑥𝑝+𝑞 log(𝐴𝐵) = log 𝐴 + log 𝐵 
𝑥𝑝

𝑥𝑞
= 𝑥𝑝−𝑞 log (

𝐴

𝐵
) = log 𝐴 − log 𝐵 

(𝑥𝑝)𝑞 = 𝑥𝑝𝑞 log(𝐴𝑞) = 𝑞(log 𝐴) 

 log𝑏(𝑥) =
log𝑐(𝑥)

log𝑐(𝑏)
 

 


