Exponential Functions, Inverse Functions, Logarithmic Functions,

Exponential Functions

Exponential functions have the independent variable in the exponent. The base is a constant.
General Formula: $y=b^{x}$ for $b>0$
Examples: Graph $y=2^{x}, \quad y=\left(\frac{1}{3}\right)^{x}$
Depending on the base, these models are usually called exponential growth or exponential decay. Exponential functions have a horizontal asymptote at $y=0$ (the x-axis), and a y-intercept at $(0,1)$
The general graphs, using the general formula, for these functions are

The Important Number e and the Important Function $f(x)=e^{x}$

Since the number e was first discovered by Napier in 1618, many different formulas have been used to describe it.
Here is one formula to get e : on your calculator, create a function

$$
y=\left(1+\frac{1}{x}\right)^{x}
$$

Then look at the values (y-coordinates) when x gets really big - over 100,000. You can do this with a table.
For very large x, this function gets closer and closer to a height of $e=2.718281828459$... (an infinite decimal which doesn't repeat).
On your calculator, you can also get e by calculating e^{1}
A very important exponential function is $f(x)=e^{x}$. Graph it.
In some books and in some software, this is written $\operatorname{Exp}[x]$.

Exponential Functions, Inverse Functions, Logarithmic Functions,

Inverse Functions

Example: The conversion function for degrees Fahrenheit (x) into degrees Celsius (y) is $y=\frac{5}{9}(x-32)$
Make a table which includes $x=32,50,80,100,212$
Sometimes, we also want to convert ${ }^{\circ} \mathrm{C}$ into ${ }^{\circ} \mathrm{F}$. The original formula gives us $C=\frac{5}{9}(F-32)$
We now need to solve for F. Do the algebra and you get $F=\frac{9}{5} C+32$
Fact: A function $y=f(x)$ sometimes has an inverse function. We obtain it by swapping the x and y and then solving for y.
The symbol for the inverse of the function f is written $\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{x})$. THIS DOES NOT MEAN RECIPROCAL!!!!!
Example: $f(x)=\frac{5}{9} x-\frac{160}{9}$. Find $f^{-1}(x)$.
$y=\frac{5}{9} x-\frac{160}{9}$
swap x and y : $x=\frac{5}{9} y-\frac{160}{9}$
solve for y : $x+\frac{160}{9}=\frac{5}{9} y$

$$
\frac{9}{5}\left(x+\frac{160}{9}\right)=y \quad \text { or } \quad y=\frac{9}{5} x+32
$$

In this example, try $x=77$ in the original function and convert the answer "backwards".
What do you get from $\left(f^{-1} \circ f\right)(77)$? Also find $\left(f \circ f^{-1}\right)(25)$ and
Fact: If f has an inverse function, then $\left(f \circ f^{-1}\right)(x)=x$ and $\left(f^{-1} \circ f\right)(x)=x$

Inverse Functions Continued

A function is called two-to-one $(\mathbf{2} \mathbf{- 1})$ if at least two x 's give the same y.
A function is called one-to-one $(\mathbf{1} \mathbf{- 1})$ if it is not $2-1$.
Fact: One-to-One functions have inverses
The Horizontal Line Test for Inverses of Functions (HLT): Assume y is a function of x. If a horizontal line intersects the graph of the function more than once, then the function does NOT have an inverse.

Exponential Functions, Inverse Functions, Logarithmic Functions,

Logarithmic Functions

Logarithmic functions are the inverses of exponential functions. We again work with positive bases ($b>0$)
Example: Graph $f(x)=2^{x}$ and make a table for the function with $x=-2,-1,0,1,2$
We can see that the graph passes the HLT.
On the table swap the x and y. Graph the points on the new table
This is the same as writing $x=2^{y}$. We write this as $y=\log _{2}(x)$ or $y=\log _{2} x$
When doing logarithms, think about switching x and y from an exponential function and looking for an exponent
Facts: $f(x)=b^{x} \Leftrightarrow f^{-1}(x)=\log _{b}(x)$ which can be written $x=b^{y} \Leftrightarrow y=\log _{b}(x)$
Examples: Find $\log _{2} 32, \log _{10} 10, \log 10000, \ln \left(e^{-2}\right), \log (-5), \log (0)$
Shorthand: $\quad \log x$ means $\log _{10} x \quad \ln x$ means $\log _{e} x$
Facts: 1. The answer of a logarithm is an exponent
2. We cannot take a log of a negative number
3. We cannot take a log of zero

Graphs of Functions and Inverses

Example: Graph the functions $y=10^{x}, y=\log x, y=x$
We see that the graphs of the exponential and logarithm are symmetric $=$ mirror images.

Fact: For $b>1$, the graph of $f(x)=\log _{b}(x)$ has an x -intercept at $x=1$ and a vertical asymptote at $x=0$ (the y-axis). The general shape is shown on the right:

Fact About Graphs of $f(x)$ and $f^{-1}(x)$

The graphs of a function and its inverse are symmetric around the line $y=x$

Properties of Logarithms:

Because of the properties of exponents, we can get related properties of logs

Exponential Property	Logarithmic Property (Work for Any Base)
$x^{p} x^{q}=x^{p+q}$	$\log (A B)=\log A+\log B$
$\frac{x^{p}}{x^{q}}=x^{p-q}$	$\log \left(\frac{A}{B}\right)=\log A-\log B$
$\left(x^{p}\right)^{q}=x^{p q}$	$\log \left(A^{q}\right)=q(\log A)$
	$\log _{b}(x)=\frac{\log _{c}(x)}{\log _{c}(b)}$

