PreCalculus and Calculus I – Angles, Radians, Trigonometric Functions, Trig Identities

Angles

We create an angle by drawing two intersecting lines or two radii in a circle. The standard position of the angle:

- Place the center of the circle at the origin (0, 0)•
- Draw one radius on the positive *x*-axis
- Measure the angle from this first radius in a counter-clockwise direction

Degrees and Radians

- We form 1 **degree** (1°) by using the angle which gives $\frac{1}{360}$ of the circle •
- The unit circle has radius 1 .
- On the unit circle, the angle formed by arc length = 1 is called 1 radian •
- In general, a radian is measured by arc length on the unit circle •
- Because of the formula for circumference, the full circle gives 2π radians, so π radians = 180°
- We can create a circle with many special angles shown on right •

Trigonometric Functions

We place θ in the unit circle with endpoint (x, y). We get 6 trig functions: Sine, Cosine, Tangent, Cotangent, Secant, Cosecant

$\cos(\theta) = x$	$\sin(\theta) = y$
$\sec(\theta) = \frac{1}{x} = \frac{1}{\cos\theta}$	$\csc(\theta) = \frac{1}{y} = \frac{1}{\sin \theta}$
$\tan(\theta) = \frac{y}{x} = \frac{\sin\theta}{\cos\theta}$	$\cot(\theta) = \frac{x}{y} = \frac{\cos\theta}{\sin\theta}$

By the Pythagorean Theorem, we get that $\cos^2\theta + \sin^2\theta = 1$ Divide by $\cos^2\theta$ to get $1 + \tan^2\theta = \sec^2\theta$ Divide by $\sin^2\theta$ to get $\cot^2\theta + 1 = \csc^2\theta$

Trigonometric Functions and Right Triangles

Place any right triangle's angle in standard position and draw the unit circle as we did Then, the given triangle (a - b - c) is **similar** to the x - y - 1 triangle. This gives us:

- $\sin \theta = y = \frac{y}{1} = \frac{b}{c} = \frac{\text{opposite}}{\text{hypotenuse}}$ $\cos \theta = x = \frac{x}{1} = \frac{a}{c} = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{y}{x} = \frac{b}{a} = \frac{\text{opposite}}{\text{adjacent}}$

This is usually written SOH-CAH-TOA

Graphs of Trig Functions

Ex: Graph $y = \sin x$

- To get the graph of $y = \cos x$ we shift the graph of the sine to the left by $\frac{\pi}{2}$. That is, $\cos x = \sin \left(x + \frac{\pi}{2}\right)$
- Sin, Cos, Sec, Csc have periods of 2π •
- Tan and Cot have periods of π

1 209

<u>5π</u> 6 150

π 1809

<u></u>π

45° ^{TT}4

<u>π</u> 6

0º 2π

More on Trig Graphs

• We can shift and stretch trig functions just like we did for other functions. The general forms are

 $y = A\sin(B(x+C)) + D, \quad y = A\cos(B(x+C)) + D$

- \circ |A| gives the amplitude of the graph = distance from the middle of the graph to the max or min
- \circ x + C tells us to shift the graph right if C is negative, and shift left if C is positive
- $\frac{2\pi}{|B|}$ gives the period of the graph
- \circ *D* is the vertical shift of the graph

Trig Identities: Each of these identities can be proven correct by using triangles, circles, or graphs.

- $\cos^2\theta + \sin^2\theta = 1$
- $1 + \tan^2 \theta = \sec^2 \theta$
- $\cot^2\theta + 1 = \csc^2\theta$
- $\cos\theta = \sin\left(\theta + \frac{\pi}{2}\right)$
- $\cos(-\theta) = \cos\theta$
- $\sin(-\theta) = -\sin\theta$
- $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
- $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
- $\sin(2\theta) = 2\sin\theta\cos\theta$
- $\sin(2\theta) = \cos^2\theta \sin^2\theta = 2\cos^2\theta 1 = 1 2\sin^2\theta$

Inverse Trig Functions

If we graph $y = \sin x$, we see that it fails the Horizontal Line Test – it is not 1-1. We can force $f(x) = \sin x$ to have an inverse function $f^{-1}(x)$ by "**restricting its domain**" <u>Ex:</u> Graph $y = \sin x$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ This new graph has an inverse – swap x and y to get $f^{-1}(x) = \sin^{-1} x$

<u>Ex</u>: Graph $y = \cos x$ on the interval $[0, \pi]$ This new graph has an inverse – swap x and y to get $f^{-1}(x) = \cos^{-1} x$

<u>Ex</u>: Graph $y = \tan x$ on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ This new graph has an inverse – swap x and y to get $f^{-1}(x) = \tan^{-1} x$