PreCalculus and Calculus I - Angles, Radians, Trigonometric Functions, Trig Identities

Angles

We create an angle by drawing two intersecting lines or two radii in a circle. The standard position of the angle:

- Place the center of the circle at the origin $(0,0)$
- Draw one radius on the positive x-axis
- Measure the angle from this first radius in a counter-clockwise direction

Degrees and Radians

- We form 1 degree $\left(1^{\circ}\right)$ by using the angle which gives $\frac{1}{360}$ of the circle
- The unit circle has radius 1

- On the unit circle, the angle formed by arc length $=1$ is called 1 radian
- In general, a radian is measured by arc length on the unit circle
- Because of the formula for circumference, the full circle gives 2π radians, so π radians $=180^{\circ}$
- We can create a circle with many special angles - shown on right

Trigonometric Functions

We place θ in the unit circle with endpoint (x, y).
We get 6 trig functions: Sine, Cosine, Tangent, Cotangent, Secant, Cosecant

$$
\begin{array}{|c|c|}
\hline \cos (\theta)=x & \sin (\theta)=y \\
\hline \sec (\theta)=\frac{1}{x}=\frac{1}{\cos \theta} & \csc (\theta)=\frac{1}{y}=\frac{1}{\sin \theta} \\
\hline \tan (\theta)=\frac{y}{x}=\frac{\sin \theta}{\cos \theta} & \cot (\theta)=\frac{x}{y}=\frac{\cos \theta}{\sin \theta} \\
\hline
\end{array}
$$

By the Pythagorean Theorem, we get that $\cos ^{2} \theta+\sin ^{2} \theta=1$
Divide by $\cos ^{2} \theta$ to get $1+\tan ^{2} \theta=\sec ^{2} \theta$
Divide by $\sin ^{2} \theta$ to get $\cot ^{2} \theta+1=\csc ^{2} \theta$

Trigonometric Functions and Right Triangles

Place any right triangle's angle in standard position and draw the unit circle as we did Then, the given triangle ($a-b-c$) is similar to the $x-y-1$ triangle. This gives us:

- $\sin \theta=y=\frac{y}{1}=\frac{b}{c}=\frac{\text { opposite }}{\text { hypotenuse }}$
- $\cos \theta=x=\frac{x}{1}=\frac{a}{c}=\frac{\text { adjacent }}{\text { hypotenuse }}$
- $\tan \theta=\frac{y}{x}=\frac{b}{a}=\frac{\text { opposite }}{\text { adjacent }}$

This is usually written SOH-CAH-TOA

Graphs of Trig Functions

Ex: Graph $y=\sin x$

- To get the graph of $y=\cos x$ we shift the graph of the sine to the left by $\frac{\pi}{2}$. That is, $\cos x=\sin \left(x+\frac{\pi}{2}\right)$
- Sin, Cos, Sec, Csc have periods of 2π
- Tan and Cot have periods of π

PreCalculus and Calculus I - Angles, Radians, Trigonometric Functions, Trig Identities

More on Trig Graphs

- We can shift and stretch trig functions just like we did for other functions. The general forms are

$$
y=A \sin (B(x+C))+D, \quad y=A \cos (B(x+C))+D
$$

- $|A|$ gives the amplitude of the graph = distance from the middle of the graph to the max or min
- $\quad x+C$ tells us to shift the graph right if C is negative, and shift left if C is positive
- $\frac{2 \pi}{|B|}$ gives the period of the graph
- D is the vertical shift of the graph

Trig Identities: Each of these identities can be proven correct by using triangles, circles, or graphs.

- $\cos ^{2} \theta+\sin ^{2} \theta=1$
- $1+\tan ^{2} \theta=\sec ^{2} \theta$
- $\cot ^{2} \theta+1=\csc ^{2} \theta$
- $\cos \theta=\sin \left(\theta+\frac{\pi}{2}\right)$
- $\cos (-\theta)=\cos \theta$
- $\sin (-\theta)=-\sin \theta$
- $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
- $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
- $\sin (2 \theta)=2 \sin \theta \cos \theta$
- $\sin (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$

Inverse Trig Functions

If we graph $y=\sin x$, we see that it fails the Horizontal Line Test - it is not 1-1.
We can force $f(x)=\sin x$ to have an inverse function $f^{-1}(x)$ by "restricting its domain"
Ex: Graph $y=\sin x$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
This new graph has an inverse - swap x and y to get $f^{-1}(x)=\sin ^{-1} x$

Ex: Graph $y=\cos x$ on the interval $[0, \pi]$
This new graph has an inverse $-\operatorname{swap} x$ and y to get $f^{-1}(x)=\cos ^{-1} x$

Ex: Graph $y=\tan x$ on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
This new graph has an inverse $-\operatorname{swap} x$ and y to get $f^{-1}(x)=\tan ^{-1} x$

