Factoring a Quadratic Polynomial

A quadratic polynomial has the form $a x^{2}+b x+c, \quad a, b$, and c are numbers, with $a \neq 0$.
To factor a quadratic polynomial means to rewrite the polynomial as the multiplication of 2 linear polynomials. If a quadratic polynomial cannot be factored then it is called a prime polynomial

$$
\begin{aligned}
& a x^{2}+b x+c=(d x+e)(f x+g) \\
& d \text { and } f \text { are factors of "a" } \\
& e \text { and } g \text { are factors of "c" } \\
& \text { (d)(g) }+(\mathrm{e})(\mathrm{f})=\text { "b" }
\end{aligned}
$$

If $a=1$ and c is negative and b is negative then c has one positive and one negative factor and the larger of the 2 factors is negative.

Example: $x^{2}-3 x-10=(x-5)(x+2)$
If $\mathrm{a}=1$ and c is positive and b is positive then c has two positive factors.
Example: $x^{2}+9 x+18=(x+3)(x+6)$
If $\mathrm{a}=1$ and c is positive and b is negative then c has two negative factors.
Example: $x^{2}-16 x+63=(x-7)(x-9)$

If the coefficient of x^{2} is negative then first factor out -1 from each term of the quadratic.
Example: $-2 x^{2}+7 x-3=-1\left(2 x^{2}-7 x+3\right)=-1(2 x-1)(x-3)$
If there is a common term in the polynomial, factor it out before factoring the quadratic.
Example: $2 x^{4}-4 x^{3}-3 x^{2}=2 x^{2}\left(x^{2}-2 x-3\right)=2 x^{2}(x+1)(x-3)$
A polynomial that is the difference between two perfect squares has the form $a^{2} x^{2}-b^{2}$ and factors to (ax-b)(ax+b)

Example: $16 x^{2}-25=(4 x-5)(4 x+5)$

