Algebra - Rules of Exponents

Exponents represent repeated multiplication. For example: $4^{3}=4 * 4^{*} 4=64$
If there is no exponent shown then it is assumed to be 1 . For example: 6 is the same as 6^{1}.
Multiplication Rule $\quad \boldsymbol{A}^{\boldsymbol{n}} * \boldsymbol{A}^{\boldsymbol{m}}=\boldsymbol{A}^{\boldsymbol{n + m}}$
Notice that the base of the exponents is the same.
Example: $9^{3 *} 9^{7}=9^{10}$ but $2^{3 *} 5^{6}$ cannot be combined because the bases are different.
Power Rules $\quad\left(\boldsymbol{A}^{\boldsymbol{n}}\right)^{m}=\boldsymbol{A}^{\boldsymbol{n * m}}$

$$
(A * B)^{m}=A^{m} * B^{m}
$$

Example: $\left(9^{3}\right)^{7}=9^{21}$ and $\quad(2 * 5)^{3}=2^{3 *} 5^{3} \quad$ and $\left(4^{5} 6^{9}\right)^{2}=4^{10 *} 6^{18}$

Division Rule $\quad \frac{\mathrm{A}^{\mathrm{n}}}{\boldsymbol{A}^{m}}=\boldsymbol{A}^{\boldsymbol{n - m}}$
Notice the base of the exponents is the same.
Example: $\frac{12 A^{5} B^{7} C^{4}}{8 A^{3} B^{2} C}=\left(\frac{12}{8}\right)\left(\frac{A^{5}}{A^{3}}\right)\left(\frac{B^{7}}{B^{2}}\right)\left(\frac{C^{4}}{C}\right)=\left(\frac{3}{2}\right)\left(A^{5-3}\right)\left(B^{7-2}\right)\left(C^{4-1}\right)=\frac{3}{2} A^{2} B^{5} C^{3}$

Zero Rule $\quad A^{\mathbf{0}}=\mathbf{1}$

Negative Rule $\quad A^{-n}=\frac{\mathbf{1}}{A^{n}}$
Example: $\quad \frac{A^{2}}{A^{5}}=A^{2-5}=A^{-3}=\frac{1}{A^{3}}$
In general, Negative exponents produce fractions (not negative answers)

